Scheme II ${ }^{a}$

${ }^{a}$ (a) 5.0 equiv of PDC, $4-\AA \mathrm{MS}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 16 \mathrm{~h}, 98 \%$; (b) (i) 1.0 equiv of NaBH_{4}, THF:MeOH (9:1), $-10^{\circ} \mathrm{C}, 1 \mathrm{~min}, 96 \%$, (ii) 1.2 equiv of dihydropyran, TsOH catalyst, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 0.5 \mathrm{~h}, 91 \%$, (iii) $\mathrm{Pd}(\mathrm{OH})_{2}$ catalyst, $\mathrm{H}_{2}, \mathrm{EtOAc}, 25^{\circ} \mathrm{C}, 16 \mathrm{~h}, 90 \%$; (c) (i) 3.0 equiv of $\mathrm{PPh}_{3}, 3.0$ equiv of imidazole, 2.0 equiv of I_{2}, benzene, $45^{\circ} \mathrm{C}, 4 \mathrm{~h}, 89 \%$, (ii) 1.1 equiv of t - $\mathrm{BuMe}_{2} \mathrm{SiOSO}_{2} \mathrm{CF}_{3}, 1.5$ equiv of 2,6 -lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 94 \%$, (iii) 2.0 equiv of $n-\mathrm{Bu}_{3} \mathrm{SnH}$, AIBN catalyst, toluene, Δ, $2 \mathrm{~h}, 99 \%$, (iv) 0.1 equiv of PPTS, $\mathrm{MeOH}, 50^{\circ} \mathrm{C}, 3 \mathrm{~h}, 86 \%$, (v) 1.1 equiv of $\left(\mathrm{CF}_{3} \mathrm{SO}_{2}\right)_{2} \mathrm{O}, 1.5$ equiv of pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 2 \mathrm{~h}, 100 \%$; (d) 1.1 equiv of $\mathrm{NaN}_{3}, 1.1$ equiv of 15 -crown-5, DMF, $25^{\circ} \mathrm{C}, 0.5 \mathrm{~h}$, 83%; (e) (i) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{SO}_{4}$ catalyst, $0-25^{\circ} \mathrm{C}, 2 \mathrm{~h}, 90 \%$, (ii) 10 equiv of $\mathrm{Cl}_{2} \mathrm{CHOMe}, \mathrm{ZnCl}_{2}$ catalyst, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 2 \mathrm{~h}, 80 \%$, (iii) 1.0 equiv of $\mathrm{HgBr}_{2}, \mathrm{MeCN}: \mathrm{H}_{2} \mathrm{O}(9: 1), \mathrm{CaCO}_{3}, 25^{\circ} \mathrm{C}, 0.5 \mathrm{~h}$, and then silica gel, 100% ($\alpha: \beta$ ca. $9: 1$), (iv) 1.1 equiv of $\mathrm{NaH}, 10$ equiv $\mathrm{Cl}_{3} \mathrm{CCN}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, $0^{\circ} \mathrm{C}, 0.5 \mathrm{~h}, 90 \%$.

Scheme III ${ }^{a}$

${ }^{a}$ (a) 7 (3.0 equiv), PPTS catalyst, hexane (0.007 M), $25^{\circ} \mathrm{C}, 4 \mathrm{~h}$, 40% (based on aglycon, 50% conversion); (b) (i) 1.5 equiv of $\mathrm{K}_{2} \mathrm{CO}_{3}$. $\mathrm{MeOH}-\mathrm{THF}(3: 2), 25^{\circ} \mathrm{C}, 6 \mathrm{~h}, 90 \%$, (ii) 2.5 equiv of ($\left.\mathrm{CF}_{3} \mathrm{CO}\right)_{2} \mathrm{O}, 5.0$ equiv of $\mathrm{Me}_{2} \mathrm{SO}, 5.0$ equiv of tetramethylurea, 5.0 equiv of $\mathrm{Et}_{3} \mathrm{~N}$ $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$; (c) 1.5 equiv of $\mathrm{NaBH}_{4}, \mathrm{MeOH}-\mathrm{THF}$ (3:2), 25 ${ }^{\circ} \mathrm{C}, 5 \mathrm{~min}, 80 \%$ overall from 9; (d) (i) excess $\mathrm{HF} \cdot \mathrm{pyr}, \mathrm{MeOH}, 50^{\circ} \mathrm{C}$, $48 \mathrm{~h}, 50 \%$; (ii) 10.0 equiv of $\mathrm{HS}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SH}, 10.0$ equiv of $\mathrm{Et}_{3} \mathrm{~N}$, $\mathrm{MeOH}, 25^{\circ} \mathrm{C}, 24 \mathrm{~h}, 90 \%$; (e) (i) 1.2 equiv of CSA, $\mathrm{MeOH}, 25^{\circ} \mathrm{C}, 2$ h, and then $\mathrm{H}_{2} \mathrm{O}, 25^{\circ} \mathrm{C}, 4 \mathrm{~h}, 60 \%$, (ii) 10 equiv of $\mathrm{LiOH}, \mathrm{THF}-\mathrm{H}_{2} \mathrm{O}$ (1:1), $25^{\circ} \mathrm{C}, 1 \mathrm{~h}, 80 \%$.
90%), to produce the pentakis(tert-butyldimethylsilyl)- N-acetyl derivative of compound $\mathbf{1 2}$, which was identical ('H NMR, IR, UV-vis, MS, TLC, HPLC, optical rotation) with an authentic sample, prepared ${ }^{6}$ from natural amphotericin B (1). The total synthesis of amphotericin \mathbf{B} (1) from intermediate 11 was then completed by (a) desilylation (HF-pyr, MeOH, 50% based on ca. 50% recovery ${ }^{18}$ followed by reduction of the azido group as
described above (90%) leading to compound $\mathbf{1 2}$ and (b) sequential deprotection to amphotericin B(1) methyl ester (CSA, MeOH, and then $\mathrm{H}_{2} \mathrm{O}, 55 \%$ based on $\mathrm{ca} .50 \%$ conversion) and finally to amphotericin $\mathrm{B}(\mathbf{1})$ itself ($\mathrm{LiOH}, \mathrm{THF}-\mathrm{H}_{2} \mathrm{O}, 80 \%$). Synthetic amphotericin $\mathrm{B}(1)$ and its methyl ester were proven to be identical with authentic samples by the usual criteria [${ }^{1} \mathrm{H}$ NMR, IR, UV-vis, MS, TLC, HPLC, optical rotation]. Thus, the total synthesis of amphotericin B(1) was accomplished.

The total synthesis of amphotericin B (1) demonstrates the power of modern organic synthesis. With the described strategy and synthetic technology available, attention may now focus on other members of the polyene macrolide class. ${ }^{19}$ Accelerated advances in further total syntheses and structural elucidations in this field should be forthcoming. ${ }^{20}$

Acknowledgment. We express our many thanks to Dr. C. Cimarusti, the Squibb Institute for Medical Research for generous samples of amphotericin B, and Dr. M. Weigele, Hoffmann-La Roche, for high-resolution FAB mass spectra. Our thanks are also due to Drs. George Furst, Patrick Carroll, and John Dykins of this department for their superb NMR, X-ray crystallographic, and mass spectroscopic assistance. This work was financially supported by the National Institutes of Health, Merck Sharp \& Dohme, and Hoffmann-La Roche, USA.

Supplementary Material Available: Listing of $R_{f},[\alpha]_{\mathrm{D}}$, IR, UV, and ${ }^{1}$ H NMR data for compounds $7-9,11$, pentakis(tert-butyl-dimethylsilyl)- N -acetyl derivative of $\mathbf{1 2}$, and methyl ester of amphotericin B (1) (4 pages). Ordering information is given on any current masthead page.
(18) Optimum results were obtained when this reaction was allowed to proceed to a mixture of the fully desilylated product and a monosilyl derivative (as yet unassigned isomeric structure, ca. 1:1 ratio). This monosilyl ether could be recycled to the fully desilylated material.
(19) For reviews on this subject see: (a) Omura, S., Ed. Macrolide Anlibiotics Chemistry, Biology and Practice; Academic: New York, 1984. (b) Ryley, J. F.; Wilson, R. G.; Gravestock, M. B.; Poyser, J. P. Adv. Pharmacol. Chemother. 1981, 18, 49. (c) Hammond, S. M. Prog. Med. Chem. 1977, 14, 105. (d) Tereshin, I. M. Polyene Anibiolics-Present and Fulure; University of Tokyo: Tokyo, Japan, 1976. (e) Hamilton-Miller, J. M. T. Bactiriol. Rev. 1973, 37, 166.
(20) New compounds exhibited satisfactory spectral and analytical and/or exact mass spectral data. Yields refer to spectroscopically and chromatographically homogenous materials.

Synthesis and Electrocyclic Ring Opening of $1,3,2 \lambda^{3}, 4 \lambda^{5}$-Diazadiphosphetines

Jurgen Böske, ${ }^{\dagger}$ Edgar Ocando-Mavarez, ${ }^{\dagger}$ Edgar Niecke, ${ }^{*}{ }^{\dagger}$ Jean-Pierre Majoral, ${ }^{* \ddagger}$ and Guy Bertrand ${ }^{* \S}$

Fakultät für Chemie, Universität Bielefeld
$D-4800$ Bielefeld, $F R G$
Laboratoire de Snythèse

Structure et Rēactivité de Molēcules Phosphorēes and Laboratoire des Organométalliques Universitē Paul Sabatier, 31062 Toulouse cedex, France

Received November 5, 1986
Of the three possible types of $\mathrm{N}-\mathrm{P}-\mathrm{N}-\mathrm{P}$ four-membered rings, the saturated diazadiphosphetidines A have been widely studied, ${ }^{1}$ an example of the fully unsaturated $1,3,2 \lambda^{5}, 4 \lambda^{5}$-diazadiphosphete B has been recently isolated, ${ }^{2}$ but there is a lack of information

[^0]
Scheme I

concerning the analogous monounsaturated derivatives C. Here we wish to report a facile synthesis of transient or relatively stable, depending on the nature of the substituents, $1,3,2 \lambda^{3}, 4 \lambda^{5}$-diazadiphosphetines and their electrocyclic ring opening.

A

B

C

Treatment of the easily available 1,3 -bis(trimethylsilyl)-2,4-bis(diisopropylamino)- $1,3,2 \lambda^{3}, 4 \lambda^{3}$-diazadiphosphetidine (1) (cis isomer) ${ }^{3}$ by a stoichiometric amount of CCl_{4} at $-60^{\circ} \mathrm{C}$ led, after loss of $\mathrm{Me}_{3} \mathrm{SiCCl}_{3}$, to iminophosphane-iminophosphorane 3a This compound, containing a dicoordinated phosphorus atom, was characterized by its typical ${ }^{31} \mathrm{P}$ NMR spectrum $(+303.7$ and -8.5 ppm, $J(\mathrm{PP})=103.5 \mathrm{~Hz}$) and by preparation of its carbon tetrachloride adduct $4 \mathrm{a} . .^{4.5}$ Above $-40^{\circ} \mathrm{C}$, it dimerized to give diazadiphosphetidine 5a (cis isomer) as two diastereoisomers ${ }^{5}$ (Scheme I). Since addition of CCl_{4} on silylated aminophosphines followed by $\mathrm{Me}_{3} \mathrm{SiCCl}_{3}$ elimination is a well-known method for

[^1]Scheme II

obtaining iminophosphoranes, ${ }^{6}$ it seems quite reasonable to rationalize the formation of 3 a by postulating the electrocyclic ring opening of a transient 4 -chlorodiazadiphosphetine 2a (Scheme I). Conclusive proof for this hypothesis was obtained by reacting 1 with an equimolar amount of tosyl azide. Indeed, 4 -azidodiazadiphosphetine $\mathbf{2 b}$ (one isomer) was found stable enough to be characterized by NMR at $-60^{\circ} \mathrm{C}:{ }^{31} \mathrm{P}$ NMR $\delta+83.2,+25.1$, $J(\mathrm{PP})=38.1 \mathrm{~Hz} ;{ }^{1} \mathrm{H}$ NMR $\delta 0.02\left(\mathrm{~d}, J(\mathrm{PH})=1.6 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{Si}\right)$; ${ }^{13} \mathrm{C}$ NMR $\delta 1.19\left(\mathrm{dd}, J(\mathrm{PC})=4.43,2.04 \mathrm{~Hz}, \mathrm{CH}_{3} \mathrm{Si}\right) ;{ }^{29} \mathrm{Si}$ NMR $\delta 6.42(\mathrm{~d}, J(\mathrm{PSi})=0.4 \mathrm{~Hz}) ;$ IR (pentane) $2135 \mathrm{~cm}^{-1}(\mathrm{P}-\mathrm{N} 3)$. Electrocyclic ring opening of $\mathbf{2 b}$ occurred at ca. $-20^{\circ} \mathrm{C}$, affording the corresponding iminophosphane-iminophosphorane $3 \mathrm{~b}{ }^{31} \mathrm{P}$ NMR $\delta+306.0,-7.4,\left(\delta^{31} \mathrm{P}+306.0\right.$ and $-7.4 \mathrm{pm}, J(\mathrm{PP})=85.6$ Hz), which in turn quickly dimerized to $\mathbf{5 b}$ (cis isomer) as two diastereoisomers ${ }^{5}$ (Scheme I).
Finally, when the aminosilylated diazadiphosphetidine 6 (trans isomer) ${ }^{7}$ was treated with a stoichiometric amount of CCl_{4} at -60 ${ }^{\circ} \mathrm{C}$, we first observed the quantitative formation of iminophosphane $3 \mathrm{c}\left(\delta^{31} \mathrm{P}+341.1\right.$ and $\left.-10.6 \mathrm{ppm}, J(\mathrm{PP})=79.9 \mathrm{~Hz}\right)$, but instead of dimerizing upon warmup, 3 c rearranged into $1,3,2 \lambda^{3}, 4 \lambda^{5}$-diazadiphosphetidine 7 (cis isomer). ${ }^{5}$ It is noteworthy that 7 does not result from a direct $\mathrm{Me}_{3} \mathrm{SiCCl}_{3}$ exocyclic elimination because of the primary observation of $\mathbf{3 c}$. Moreover, although a direct pathway from 3 c to 7 cannot be totally excluded, this would be a very strange mechanism. It seems therefore very probable that there is an equilibrium between the open form $3 c$ and the diazadiphosphetine 2c, which then undergoes a classical $1 \sim 3$ trimethylsilyl migration leading to 7 (Scheme II).

To conclude, it appears that $1,3,2 \lambda^{3}, 4 \lambda^{5}$-diazadiphosphetines are intrinsically unstable because of the extensively displaced equilibrium in favor of the corresponding open form isomer but play an essentiel role as intermediates in the oxidation reaction of $1,3,2 \lambda^{3}, 4 \lambda^{3}$-diazadiphosphetidines.

Acknowledgment. We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie (E.N.) as well as the Centre National de la Recherche Scientifique (J.P.M., G.B.) for financial support.
(6) Li, B. L.; Engenito, J. S.; Neilson, R. H.; Wisian-Neilson, P. Inorg. Chem. 1983, 22, 575, Scherer, O. J.; Schieder, G. Chem. Ber. 1968, 101, 4184.
(7) Niecke, E.; Flick, W.; Pohl, S. Angew, Chem., Inl. Ed. Engl. 1976, 15, 309.

[^0]: ${ }^{\dagger}$ Universităt Bielefeld.
 ${ }^{\ddagger}$ Laboratoire de Synthèse, Structure et Reactivitë de Molēcules Phosphorēes.
 ${ }^{8}$ Laboratoire des Organomētalliques.
 (1) Grapov, A. F.; Razvodovskaya, L. V.; Mel'nikov, N. N. Russ. Chem. Rev. (Engl. Tranl.) 1981, 50, 324. Chen, H. J.; Haltiwanger, R. C.; Hill, T. G.; Thompson, M. L.; Coons, D. E.; Norman, A. D. Inorg. Chem. 1985, 24, 4725 and references therein.
 (2) Baceiredo, A.; Bertrand, G.; Majoral, J. P.; Sicard, G.; Jaud, J.; Galy, J. J. Am. Chem. Soc. 1984, 106, 6088. Baceiredo, A.; Bertrand, G.; Majoral, J. P.; El Anba, F.; Manuel, G. J. Am. Chem. Soc. 1985, 107, 3945.

[^1]: (3) Scherer, O. J.; Glässel, W. Chem. Ber. 1977, 110, 3874. Zeiss, W.; Feldt, C.; Weis, J.; Dunkel, G. Chem. Ber. 1978, 111, 1180.
 (4) Niecke, E.; Bitter, W. Chem. Ber. 1976, 109, 415.
 (5) Compounds $\mathbf{4 a}, \mathbf{5 a}, \mathbf{5 b}$, and 7 afforded satisfactory elemental analysis. Typical spectroscopic data are the following. 4a (60% yield), two diastereoisomers 80/20: ${ }^{31} \mathrm{P}$ NMR $\delta-5.78(\mathrm{~d}, J(\mathrm{PP})=33.0 \mathrm{~Hz}$), $-25.38(\mathrm{~d}, J(\mathrm{PP})$ $=33.0 \mathrm{~Hz}) /-5.32(\mathrm{~d}, J(\mathrm{PP})=35.6 \mathrm{~Hz}),-23.98(\mathrm{~d}, J(\mathrm{PP})=35.6 \mathrm{~Hz}) ;{ }^{1} \mathrm{H}$ NMR $\delta 0.35(\mathrm{~s}) / 0.34\left(\mathrm{~s}, \mathrm{Me}_{3} \mathrm{Si}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 3.99(\mathrm{~d}, J(\mathrm{PC})=5.04 \mathrm{~Hz}) / 4.20$ (d, $\left.J(\mathrm{PC})=5.6 \mathrm{~Hz}, \mathrm{Me}_{3} \mathrm{Si}\right)$; mass spectrum, $m / e 550(\mathrm{M}+) .5 \mathrm{a}(64 \%$ yield), two diastereoisomers $50 / 50$ according to ${ }^{31} \mathrm{P}$ NMR at 121.5 MHz but not differentiated in ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR: ${ }^{31} \mathrm{P}$ NMR $\delta 104.2(\mathrm{t}, J(\mathrm{PP})=39.7 \mathrm{~Hz})$, $-20.1(\mathrm{t}, J(\mathrm{PP})=39.7 \mathrm{~Hz}), 104.1(\mathrm{t}, J(\mathrm{PP})=39.7 \mathrm{~Hz}),-20.1(\mathrm{t}, J(\mathrm{PP})=$ 39.7 Hz); ${ }^{1} \mathrm{H}$ NMR $\delta 0.54$ ($\mathrm{s}, \mathrm{Me}_{3} \mathrm{Si}$); mass spectrum, $m / e 796$ (M+). 5b (82% yield), two isomers $50 / 50$ according to ${ }^{13} \mathrm{C}$ NMR but not differentiated in ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR: ${ }^{31} \mathrm{P}$ NMR $\delta+99.02(\mathrm{t}, J(\mathrm{PP})=34.4 \mathrm{~Hz}),-22.24(\mathrm{t}$, $J(\mathrm{PP})=34.4 \mathrm{~Hz}) ;{ }^{1} \mathrm{H} \mathrm{NMR} \delta 0.36\left(\mathrm{~s}, \mathrm{Me}_{3} \mathrm{Si}\right) ;{ }^{13} \mathrm{C}$ NMR $\delta 4.90(\mathrm{~d}, J(\mathrm{PC})$ $=1.20 \mathrm{~Hz}) / 4.93\left(\mathrm{~d}, J(\mathrm{PC})=1.20 \mathrm{~Hz}, \mathrm{Me}_{3} \mathrm{Si}\right)$; IR $2140 \mathrm{~cm}^{-1}\left(\mathrm{~N}_{3}\right)$; mass spectrum, $m / e 810(\mathrm{M}+) .7\left(42 \%\right.$ yield), one isomer: ${ }^{31} \mathrm{P}$ NMR $\delta+102.5$ $(\mathrm{d}, J(\mathrm{PP})=46.5 \mathrm{~Hz}),-28.9(\mathrm{~d}, J(\mathrm{PP})=46.5 \mathrm{~Hz}) ;{ }^{1} \mathrm{H}$ NMR $\left(-35^{\circ} \mathrm{C}\right) \delta 0.02$ $\left(\mathrm{d}, J(\mathrm{PH})=0.6 \mathrm{~Hz},=\mathrm{N}-\mathrm{SiMe}_{3}\right), 0.20\left(\mathrm{t}, J(\mathrm{PH})<0.2 \mathrm{~Hz},\left(\mathrm{~N}-\mathrm{SiMe}_{3}\right), 0.26\right.$ $\left(\mathrm{d}, J(\mathrm{PH})=4.4 \mathrm{~Hz}, \mathrm{NSiMe}_{3}\right), 0.38\left(\mathrm{~s}, \mathrm{NSiMe}_{3}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(-40^{\circ} \mathrm{C}\right) \delta 0.06$ $\left(\mathrm{t}, J(\mathrm{CP})=3.0 \mathrm{~Hz},\left\langle\mathrm{~N}-\mathrm{SiMe}_{3}\right), 2.52\left(\mathrm{~d}, J(\mathrm{PC})=5.3 \mathrm{~Hz},=\mathrm{N}-\mathrm{SiMe}_{3}\right), 4.97\right.$ $\left(\mathrm{d}, J(\mathrm{PC})=21.6 \mathrm{~Hz}, \mathrm{NSiMe}_{3}\right), 4.83\left(\mathrm{~s}\right.$, NSiMe ${ }_{3}$); ${ }^{29} \mathrm{Si}$ NMR (room temperature $) \delta-10.3(\mathrm{~d}, J(\mathrm{SiP})=20.7 \mathrm{~Hz},=\mathrm{N}-\mathrm{Si}), 6.4(\mathrm{~d}, J(\mathrm{SiP})=13.1 \mathrm{~Hz}$, $\left.\stackrel{\mathrm{N}}{\mathrm{N}}\left(\mathrm{SiMe}_{3}\right)_{2}\right), 8.4\left(\mathrm{br} \mathrm{s},\left\langle\mathrm{N}-\mathrm{SiMe}_{3}\right)\right.$; mass spectrum, $m / e 503\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right)$.

